

Feuerfest- und Schmelztechnologie

Improvement of porous refractory material in contact with glass

Dr. Rolf Weigand

Table of Content

- 1 Motivation
- 2 Technology
- 3 Research and results
- 4 Application and implementation of the technology
- 5 Value and potential
- 6 Conclusion
- 7 Outlook

1 Motivation

Why improvement of refractories?

- reduction in energy consumption in the past
- corrosion of refractory reduces glass quality
 - → increasing of energy consumption per glass product
- development of a treatment technology for all available porous refractories
 - → reduce the interaction with glass melt
 - → independent from refractory producer

energy consumption of various glass furnaces

sector	energy consumption $[^{GJ}/_{t}]$
container glass	4.7
float glass	7.2
tableware	8.0
E-Glass fibers	13.0

Reference: Beerkens, 2006

1 Motivation

Complexity of melt and refractory

factors:

furnace:

temperature/time/ atmosphere

composition/grain distribution/ capillarity/porosity/ pore atmosphere

Reference: Mertens, 2014

Reference: HVG, 1996

Reference: RHI, 2014

glass melt:

composition/viscosity/
surface tension

surface-volume-ratio:
glass melt-refractory

Principle - ancorro

beading effect in nature

beading effect in the laboratory

strong infiltration/attack without ancorro-technology

infiltration/attack reduced significantly with ancorro-technology

patented process

Principle - ancorro

surface-treatment-technology of ancorro creates reducing atmosphere in the pores
 reducing atmosphere increases in the boundary layer:

surface tension of the glass

Principle - ancorro

surface-treatment-technology of ancorro creates reducing atmosphere in the pores
 reducing atmosphere increases in the boundary layer:

Principle - ancorro

surface-treatment-technology of ancorro creates reducing atmosphere in the pores
 reducing atmosphere decreases:

capillarity

oxidizing

reducing

Reference: Gerthsen Physik, 2006

$$h = \sqrt{\frac{\sigma \cdot \cos \theta \cdot r \cdot t}{2\eta}}$$

Research

Since 2008 ancorro investigate materials to improve porous refractory.

measurement and analysis:

- static finger test (corrosion measurement)
- dynamic finger test (corrosion measurement with flow simulation)
- evaluation and measurement (using a 3D-scanner)
- crucible test (measurement infiltration depth)
- blistering studies (measurement blistering formation)
- crystallization measurement (determine crystallization temperature)
- glass analysis (detailed analysis of glasses)

Results corrosion minimization

90% lower corrosion after 21 hour static finger test on zirconium-corundum brick at 1450 °C in green glass

Implementation of the ancorro - technology on

...refractories of the type: \rightarrow fireclay → sillimanite

→ bricks containing chrome

→ corundum

→ bricks containing zircon

→ mullite

...melts of the type:

 \rightarrow soda lime glass

→ soluble glass

 \rightarrow lead glass

→ different enamels

effect of the ancorro technology on different refractories, reference (left) and ancorro treated (right):

sillimanite

mullite

AZS-joint compound

Examples

AZS - soda-lime glass

sillimanite - enamel

Crystallization

- homogeneous nucleation: temperature gradient
 - no interface present
 - ≠ industrial glass production
- heterogeneous nucleation: temperature and/or saturation gradient
 - interface present
 - \rightarrow wetting
 - = comparable with industrial glass production

homogeneous and heterogeneous nucleation

Crystallization

- nucleation in the glass melt:
- → homogeneous nucleation

$$\Delta G_{max} = \frac{16\pi \cdot \sigma^3}{3 \left(\Delta g_V\right)^2}$$

Crystallization

 influence of the refractory corrosion to the liquidus / crystallization temperature of the glass:

Crystallization

- detecting crystallization via gradient furnace
- refinement of the refractory samples to minimize crystallization
- reduction of the crystallization temperature about 140K inhibition of the heterogeneous nucleation

crystal formation in the contact zone glass melt - refractory

4 Application and implementation of the technology

Industry

Since 2010 tests have been carried out continuously in collaboration with industrial

partners.

results:

- fireclay pots life extension by 50%
- plungers reduction of blistering after change up to 95%
- orifice rings reduction of crystal formation in the glass by factor 6
- orifice rings life extension from 3 to 5 weeks

Further tests are conducted with the following components:

tank block, stirrer, lip stone, superstructure of the feeder, regenerator bricks, plunger, torque, fireclay pots

Value for industry

reduction of the interactions between glass melt and refractory

- porous bricks show the same properties as expensive, fused cast refractory
- increasing service life and reduction of production downtimes
- reduction of rejects
- energy savings through lower heat losses / minimized CO₂ emissions
- flexibility applicable to all refractories
- enormous savings through batch conversion (container glass)

Potential batch conversion

- crystallization at the orifice ring
 → gob temperature ca. 1150°C
- increasing the lime content
- elimination of the crystallization due to ancorro-technology

composition [in wt. %]	Glass I	Glass II
SiO ₂	72.6	71.2
Al_2O_3	1.5	1.5
Na ₂ O	12.5	11.9
K ₂ O	0.6	0.6
MgO	2.5	2.5
CaO	10	12
Fe ₂ O ₃	0.04	0.04
SO ₃	0.3	0.3
fining temperature [°C]	1465	1445
liquidus temperature [°C]	1038	1093

Glass I: untreated orifice ring

Glass II: orifice ring treated by ancorro

Potential batch conversion

- lowering the batch free time about 33% by increasing of CaO-content
- minimization of the residue quartz dissolution
- same thermal stress of the furnace
 - = increasing of the tonnage
 - \rightarrow rise of capacity
 - → depending on forming machines
 - → realizable often only for new construction
- increase of turnover about 5.5 million EUR/a possible

Reference: TNO; 1997

Glass I untreated orifice ring

Glass II orifice ring treated by ancorro

Non-glass contact refractory materials:

Silica crown material: Two aspects

- a.) Improvement of the heat transfer by radiation
- b.) Corrosion improvement especially against NaOH attack

Higher crown temperature below 1700 °C could be an answer to a.)

Limited due to corrosion problems

Coatings could be a possible answer

New cheap and effective coatings for the problems of a.) and b.)

Examples

silika brick− NaOH-atmosphere (1500°C – 3 hours)

ancorro after the treatment

ancorro after the test

Reference after the test

Potential batch adjustment

- container glass furnace with a tonnage of 250 [†]/_d and campaign of 10 years
- refinement of the orifice ring to prevent crystallization
 - → increasing of CaO-content possible
- lowering of the fining temperature by ≈20K
 - \rightarrow > 3 % energy savings/ minimization of CO₂-Emission
 - → reduction of the thermal stress of the furnace
 - = decreasing of cat scratches
 - = \approx 10% service life increasement
- reduction of costs by soda ash
- total savings > 500,000 EUR/year and glass furnace possible
- payback time < 3 months

cat scratches in the glass

Reference: Martinek, Zwiesel 2007

6 Conclusion

- reduction of the refractory corrosion // blistering // crystallization of the glass
 - → porous refractories show properties of fused cast refractories

- scale-up of the ancorro-technology from laboratory into industry realized
 - → 50% increasing service life fireclay pots
 - → 95% lower blistering after plunger change
 - → prevent of crystallization at orifice ring by factor 6
 - \rightarrow >65% increasing service life orifice ring
- saving potential container glass > 500,000 EUR/ year and furnace

Outlook

Further fields of application

metallurgy, cement industry, special glasses, waste incineration, dust and condensation zones in high temperature processes

ancorro GmbH Schulweg 1 09603 Großschirma Germany

Tel.: +49 (0)3731 39-3414 info@ancorro.de www.ancorro.de

We are looking for further industrial partners to implement and improve our process.

Reference: http://www.cfoworld.de, online 2013

